
RAMBOTS
DESIGNED BY KORY HEATH

EQUIPMENT
• N+1 trios of Red, Yellow, Blue, and Green
• Chessboard
• N Large Clear pyramids
• N Privacy Screens

CONT. --->

OVERVIEW
Deep in the heart of The Complex, you have been awakened
by the Master Priority Scheduler. Yet again, you must
perform your data collection tasks. No more time for
wondering what lies beyond The Complex, or if “outside”
really even exists. You now have a task.

And uh-oh, it’s a Multi-Task.

Other ‘bots will be accessing the
glowing data beacons that float
near the center of this wide
metallic chamber. You must
collect your precious data
– in the correct order – as
quickly as possible.

Do not hesitate to RAM
the electrons out of
anyone who
gets in your
way!

2-4

SETUP
STEP 1 - DISTRIBUTE CODE POOLS: Stack up all of
the pyramids into monochrome trees and place a full set
in front of each player. Players will use these pieces to
create instructions for their RAMbot. Each player also
receives a Clear piece (called a Compilation Cap) along
with a privacy screen to hide their programs behind.
Ideally, the privacy screens will be color-coded to
display the color assigned to each player.

STEP 2 - POPULATE THE BOARD: Place the extra
set of trios on the gameboard and sort those pieces by
size. The Larges will become the RAMbots, the Smalls
will become the Data Beacons, and the Mediums will be
become the Precedence Stack.

Place the RAMbots in the space shown below, closest to
their assigned players. (If there are fewer than 4 players,
set aside the unused RAMbots.)

Place the Data Beacons, lying on their sides (direction
doesn't matter) in the spots shown below. (For a more
unpredicable setup, place the pieces in the indicated
spots but in random color order.)

Create the Precedence Stack with an initial random order
and place it in the middle of the four center squares.

MEDIUM COMPLEX

001

STEP 3 - CREATE GOAL STACKS: Each player now
chooses four pieces from their Code Pool (one of each
color but whichever sizes they choose) to create the
Goal Stack for the player to their left. These stacks will
determine the order in which the Data Beacons must be
tagged (first on top). Don't let anyone see which pieces
you've chosen until all players are ready to reveal at one.
Place the Goal Stacks in the corners of the gameboard,
not on the corner spaces themselves, but on the edges.

N = Number of players

RAMBOTS (CONT.)

002

GOAL

Program your RAMbot to tag all four Data Beacons,
each of which has first been activated, in the order
indicated by your Goal Stack, before anyone else!

WHO GOES FIRST

This game doesn't have a traditional turn order.
Everyone does their programming simultaneously,
then everyone's programs are run at the same
time, with the order of multi-tasking operations
being dependant on both the Precedence Stack
and the piece sizes used in programming.

HOW TO PLAY

During each Programming Phase, you will choose
a sequence of five commands for your RAMbot.
Then, during the Execution Phase, you will hope
for the best as your commands are carried out!

THE PROGRAMMING PHASE

At the beginning of this phase, all players set up
their screens and begin “programming” their
RAMbots. You may lay out up to five of your
code-pool pieces behind your screen; they will
be executed in order from left to right.

Each instruction piece represents a single
RAMbot action, which will cause your RAMbot to
move and then shoot a beam of colored energy.
Each color has a different effect. Blue and Yellow
beams Push and Pull, Green Activates (i.e. causes
to stand up) a piece, and Red does damage.

The maximum number of instructions is five, but
fewer is allowed.

When all players have finished programming,
everyone lifts their screens, and the game moves
on to the Execution Phase.

A TYPICAL PROGRAM

MOVE(NORTH,3);
FIRE_LASERS

MOVE(WEST,3);
PUSH(3) MOVE(BACK,1);

PULL(1)

MOVE(NORTH,2);
PULL(2)

MOVE(WEST,1);
ACTIVATE

CONT. --->

RAMBOTS (CONT.)

CONT. --->003

THE EXECUTION PHASE

To begin this phase, each player should slide their
leftmost instruction forward to the center of the
nearest board edge, an action known as “loading
the program register.” One of these instructions
is about to be executed; to determine which one,
first look at the sizes of the pieces. Smaller pieces
run more quickly than larger pieces, so smaller
pieces always take precedence over larger ones.
If there is a single smallest piece, simply execute
that instruction.

If there is a tie for smallest piece, compare the
colors of the tying pieces to the Precedence
Stack. Higher colors always take precedence
over lower ones. If there is a single highest color
among the tying pieces, simply execute that
instruction.

If there is another tie, then the instruction pieces
in question must be identical. In this case,
compare the colors of the appropriate player’s
RAMbots to the colors in the Precedence Stack.
The player whose color is on top executes first.
(This is easy to see, assuming you’ve arranged the
precedence stack according to the initial RAMbot
colors. The player whose color is currently on
top of the precedence stack will have the highest
precedence during a tie, and so on clockwise
around the table.)

After an instruction has been executed, the
instruction piece should be returned to its owner’s
Code Pool, and that player’s next leftmost
instruction should immediately be pushed
forward into his or her program register. Once
again, follow the above rules to determine which
instruction should be executed next, and then
execute it. (Note that it is perfectly possible for
a player to execute two or more instructions in a
row.) Repeat this process until every instruction
has been executed.

After executing all instructions, move the topmost
piece of the Precedence Stack to the bottom,
then the next Programming Phase begins.

EXECUTING INDIVIDUAL INSTRUCTIONS

Each instruction in your program will cause your
RAMbot to move and then fire a beam of colored
energy in front of itself. Each piece in a program
should either be lying down and pointing in one
of the four cardinal directions, or standing upright
on its base. The orientation of the instruction
piece indicates how your RAMbot will move, and
the color of the instruction piece indicates what
kind of beam your RAMbot will fire.

MOVEMENT

An instruction piece lying on its side tells your
RAMbot to move in the direction the instruction
piece is pointing. When you execute this
instruction, move your RAMbot one, two, or three
spaces in the appropriate direction, depending on
whether the instruction piece is small, medium, or
large. If your RAMbot is not already facing in the
direction that your instruction piece is pointing,
the first unit of the movement instruction will be
used to reorient your RAMbot in the appropriate
direction. So, for instance, if you have a large
movement instruction piece pointing in a different
direction than your RAMbot, you must first
reorient your RAMbot (using one unit of the
movement action), and then move it two spaces
in the appropriate direction. A small-sized
movement instruction will therefore reorient
your RAMbot without moving it if it’s not already
facing in the appropriate direction. If at any time
your RAMbot is standing on its base (as it is at
the beginning of the game), the first unit of a
movement instruction will tip your RAMbot down
and point it in the appropriate direction, to be
followed by the rest of the movement action.

An instruction piece standing on its base
represents “reverse gear”—it causes your RAMbot
to move backwards away from the direction
that it’s currently pointing, for one, two, or three
spaces. If your RAMbot is currently standing on
its base, an upright instruction will not move your
RAMbot at all.

RAMBOTS (CONT.)

004

PUSHING AND RAMING

If, during one of your movement instructions, your
RAMbot moves forward into or backs into a space
that contains a beacon or another RAMbot, the
object will be pushed. If there are objects directly
on the other side of the pushed object, they will
be pushed along with it. If an object cannot be
pushed any further (because it’s against a wall,
or it’s against objects which are against a wall),
your RAMbot simply stays where it is (though
you do still make contact with the object). If your
RAMbot runs into a wall, nothing special happens.

If the nose of your RAMbot hits another piece,
you have RAMed that object. (Backing into an
object, or getting pushed into an object during
someone else’s instruction, you do not RAM it.)
Multiple hits during a single instruction counts as
one RAM. Whenever you RAM another player’s
RAMbot, you cause damage to that RAMbot. Take
the highest precedence piece from that player’s
Code Pool and add it to your own Code Pool. In
other words, take the smallest piece available in
that player’s Code Pool; if there’s a tie for smallest
piece, take a piece of the color that’s highest on
the Precedence Stack. If there are currently no
pieces in that player’s Code Pool, you don’t get to
steal any pieces. You may not steal pieces from an
opponent’s currently running program.

If you RAM an upright object (whether it’s a
beacon or a RAMbot), tip it down onto its side,
facing away from the point of impact. If that
object matches the color currently on top of your
goal stack, you have tagged a goal. Remove the
top piece from your Goal Stack, and add it to
your own Code Pool.

ENERGY BEAMS COLORS

After your RAMbot moves, it will fire a colored
energy beam in a straight line out in front of itself.
The beam’s color is determined by the color of
your instruction piece. The beam will affect the
first object it hits. If a beam hits a wall, or fires
straight upwards, it has no effect.

BLUE-PUSH: A blue beam will push any object it
hits (along with anything else that the object runs
into) away from your RAMbot for one, two, or
three spaces, depending on the size of your blue
instruction piece.

YELLOW-PULL: A yellow beam will pull any
object it hits toward your RAMbot for one, two,
or three spaces, depending on the size of your
instruction piece. If an object is pulled all the way
into the nose of your RAMbot, the object remains
in the space next to your RAMbot. This does not
count as a RAM; you cannot damage another
player, tag a goal, or knock over an upright object
in this fashion.

RED-DAMAGE: A Red beam will damage any
RAMbot that it hits. (This is in addition to any
RAMing damage caused during this instruction.)
Take the highest precedence piece from that
player’s Code Pool and add it to your own. (The
Red beam doesn’t actually RAM and doesn’t
knock over the target piece.)

GREEN-ACTIVATE: A green beam will set any
object it hits upright.

HOW TO WIN

The first player to tag all four goal colors in the
order specified by their Goal Stack is the winner!

OTHER NOTES

Compilation Caps: These are used to indicate
who’s finished programming (so you can tell when
everyone’s ready). Drop your Clear onto your
Goal Stack to indicate that you’re ready to run.
(You may also remove the Cap to “uncompile” and
change your program if others are still coding.)

Code Pool Disclosure: Although you may hide
your work while Programming, your opponents
do get to know what pieces you are working with.
Therefore, you must give honest answers to any
questions you are asked about the number, sizes,
and colors of pieces in your Code Pool.

