
RAMbots

Deep in the heart of The Complex—a sprawling, seemingly infinite
maze of gleaming corridors and whirring bots—the Master Priority
Scheduler has awakened you for yet another task. You find yourself in a
wide metallic chamber, featureless save for the glowing beacons
floating near the center. Looks like data-collection again—typically the
simplest of tasks. However, as your sensors sweep across the expanse of
the chamber, you register the existence of other bots hovering out on
the perimeter.

Uh oh. A Multi-Task. Time to check the precedence stack and get going.

But you pause to wonder, as you have so many times before: what is this Master Priority Scheduler? What is the
Ultimate Task, of which your own is but a tiny, insignificant fraction? How big is this Complex? What’s Outside?
Is there an Outside?

Sadly, the answers to these questions a simple RAMbot is not given to know. All you know is the task that has
been set before you: to collect your precious data; to collect it in the proper order; to collect it as quickly as
possible.

And, of course, to RAM the hell out of anyone who gets in your way.

What You Need

Two to four players.
A Rainbow Treehouse set for each player, plus one extra set.
A chessboard.
A cardboard screen for each player.

Setup

Kory Heath
Game Designer / Unity Developer

http://www.looneylabs.com/whybuy/treehouse.html
http://www.koryheath.com/


The easiest way to begin setting up RAMbots is to use all of the pieces
to build trees of each color. (A “tree” is a small piece stacked on a
medium stacked on a large.) Each player should gather an initial
“code-pool” of pieces by selecting a single tree of each color. A tree of
each color should also be placed on the board. The large pieces on the
board represent RAMbots, the medium pieces represent the
“precedence stack”, and the small pieces represent beacons. Assign a
RAMbot to each player, and place each one upright near its owner, in
the spaces shown in the diagram. If there are fewer than four players,
set aside any unused RAMbots and code-pool pieces for the duration of
the game.

Arrange the four beacons as shown in the diagram, lying down on their sides (it doesn’t matter in which
direction), and in random color order. Arrange the four medium pieces into a stack which, from top to bottom,
matches the color ordering of the RAMbots on the board, beginning with a random color and moving clockwise
around the board. (This ordering is not strictly necessary, but it will make the process of executing programs
during the game a bit easier.) The precedence stack should not actually occupy spaces on the board, but it can be
placed in the center intersection so that it will be easily visible to all players.

Select one piece of each color from your code-pool (of whatever sizes you choose) and create a “goal stack” for
the player on your left. This stack will represent the order in which that player needs to tag the four goals to win
the game; the top piece the color that needs to be tagged first, and so on. Keep the goal stack you create hidden
until all players have created one; then place the goal stack on the corner nearest your neighbor’s RAMbot, on
the very edge of the board. Like the precedence stack, these goal stacks do not occupy spaces on the board, and
they will not interfere with the movements of RAMbots during the game.

Once the goal stacks have been created, the setup is complete; you’re ready to begin playing.

Play

A single round of play is divided into two phases: the programming phase, and the execution phase.

The Programming Phase

At the beginning of this phase, all players set up their screens and begin “programming” their RAMbots. You
may lay out up to five of your code-pool pieces behind your screen; they will be executed in order from left to
right. Each instruction piece represents a single RAMbot action, which will cause your RAMbot to move and
then shoot a beam of colored energy. (See the section entitled “Executing Individual Instructions” for a full
description of RAMbot actions.) You are not allowed to set up more than five instructions, but you are allowed
to set up less than five.

When all players have finished programming, everyone lifts their screens, and the game moves on to the
Execution Phase.



The Execution Phase

To begin the Execution Phase, each player should slide his or her leftmost instruction forward to the center of
the nearest board edge, an action known as “loading the program register”. One of these instructions is about to
be executed; to determine which one, first look at the sizes of the pieces. Smaller pieces run more quickly than
larger pieces, so smaller pieces always take precedence over larger ones. If there is a single smallest piece,
simply execute that instruction. (See the section entitled “Executing Individual Instructions” for details on how
the individual instructions work.)

If there is a tie for smallest piece, compare the colors of the tying pieces to the precedence stack in the middle of
the board. Higher colors always take precedence over lower ones. If there is a single highest color among the
tying pieces, simply execute that instruction.

If there is another tie, then the instruction pieces in question must be identical. In this case, compare the colors
of the appropriate player’s RAMbots to the color precedence stack. The instruction belonging to the player
whose RAMbot’s color is highest on the precedence stack should execute first. (This is easy to see, assuming
you’ve arranged the precedence stack according to the initial RAMbot colors. The player whose color is currently
on top of the precedence stack will have the highest precedence during a tie, and so on clockwise around the
table.)

After an instruction has been executed, the instruction piece should be returned to its owner’s code pool, and
that player’s next leftmost instruction should immediately be pushed forward into his or her program register.
Once again, follow the above rules to determine which instruction should be executed next, and then execute it.
(Note that it is perfectly possible for a player to execute two or more instructions in a row.) Repeat this process
until every instruction has been executed.

When all instructions have been executed, the round of play is over. Remove the top piece from the precedence
stack, and place it on the bottom of the stack. Now you’re ready to begin another programming phase.

Executing Individual Instructions

Each instruction in your program will cause your RAMbot to move and then fire a beam of colored energy in
front of itself. Each piece in a program should either be lying down and pointing in one of the four cardinal
directions, or standing upright on its base. The orientation of the instruction piece indicates how your RAMbot
will move, and the color of the instruction piece indicates what kind of beam your RAMbot will fire.

Movement

An instruction piece lying on its side tells your RAMbot to move in the direction the instruction piece is
pointing. When you execute this instruction, move your RAMbot one, two, or three spaces in the appropriate
direction, depending on whether the instruction piece is small, medium, or large. If your RAMbot is not already
facing in the direction that your instruction piece is pointing, the first unit of the movement instruction will be
used to reorient your RAMbot in the appropriate direction. So, for instance, if you have a large movement
instruction piece pointing in a different direction than your RAMbot, you must first reorient your RAMbot



(using one unit of the movement action), and then move it two spaces in the appropriate direction. A small-
sized movement instruction will therefore reorient your RAMbot without moving it if it’s not already facing in
the appropriate direction. If at any time your RAMbot is standing on its base (as it is at the beginning of the
game), the first unit of a movement instruction will tip your RAMbot down and point it in the appropriate
direction, to be followed by the rest of the movement action.

An instruction piece standing on its base represents “reverse gear”—it causes your RAMbot to move backwards
away from the direction that it’s currently pointing, for one, two, or three spaces. If your RAMbot is currently
standing on its base, an upright instruction will not move your RAMbot at all.

Pushing and RAMing

If, during one of your movement instructions, your RAMbot moves forward into or backs into a space that
contains a beacon or another RAMbot, the object will be pushed. If there are objects directly on the other side of
the pushed object, they will be pushed along with it. If an object cannot be pushed any further (because it’s
against a wall, or it’s against objects which are against a wall), your RAMbot simply stays where it is (though you
do still make contact with the object). If your RAMbot runs directly into a wall, nothing special happens.

If you make contact with another object with the nose of your own RAMbot, you have RAMed that object. (If you
back up into an object, or if you get pushed into another object during someone else’s instruction, you do not
RAM that object.) If you make contact with another object multiple times during a single instruction, this only
counts as a single RAM. Whenever you RAM another player’s RAMbot, you cause damage to that RAMbot. Take
the highest precedence piece from that player’s code-pool and add it to your own code-pool. In other words,
take the smallest piece available in that player’s code pool; if there’s a tie for smallest piece, take a piece of the
color that’s highest on the precedence stack. If there are currently no pieces in that player’s code pool, you don’t
get to steal any pieces. You may not steal pieces from an opponent’s currently running program.

If you RAM an upright object (whether it’s a beacon or a RAMbot), tip it down onto its side, facing away from
the point of impact. If that object matches the color currently on top of your goal stack, you have tagged a goal.
Remove the top piece from your goal stack, and add it to your own code-pool.

Colored Energy Beams

After your RAMbot moves, it will fire a colored energy beam in a straight line out in front of itself. The beam’s
color is determined by the color of your instruction piece. The beam will affect the first object it hits. If a beam
hits a wall, or fires straight upwards, it has no effect.

Blue—Push

A blue beam will push any object it hits (along with anything else that the object runs into) away from your
RAMbot for one, two, or three spaces, depending on the size of your blue instruction piece.

Yellow—Pull

A yellow beam will pull any object it hits toward your RAMbot for one, two, or three spaces, depending on the



size of your instruction piece. If an object is pulled all the way into the nose of your RAMbot, the object remains
in the space next to your RAMbot. This does not count as a RAM; you cannot damage another player, tag a goal,
or knock over an upright object in this fashion.

Red—Slide

A red beam will slide any object it hits sideways (along with anything else that the object runs into), away from
the beam and towards the center line of the game board, for one, two, or three spaces, depending on the size of
your red instruction piece.

Green—Activate

A green beam will set any object it hits upright.

Winning

The first player to tag all four goal colors in the order specified by his or her goal stack is the winner.

Special Notes

Compilation Caps—Although it isn’t strictly necessary, it’s helpful during the programming round to have some
kind of method of indicating who’s finished programming (so it’s immediately obvious when everyone’s ready).
This can be something as simple as placing a coin on the edge of the board next to your goal stack when you’re
done. However, we prefer to give each player a small black Icehouse piece. Drop your “compilation cap” on top
of your goal stack to indicate that you’re compiled and ready to run. (Of course, you’re free to “uncompile” and
change your program, as long as the execution phase hasn’t started yet.)

Code Pool Disclosure—Although players may choose to move their code-pools behind their screens during the
programming phase (to keep people from seeing which pieces they’re using), the official rule is that you’re
allowed to know exactly what pieces each player has to work with. Therefore, it’s legal to ask players about their
pieces (how many small pieces they have, what colors they are, etc.) at any time during the game, and they must
answer honestly.

Speedbots—For a fast-paced variation of RAMbots, try this rule: the programming round ends when all but one
of the players have compiled; the uncompiled player must use his or her program as it lies.

Links

Design History
RAMbots at BoardGameGeek

Acknowledgments

Game Design—Kory Heath
Game Development—John Cooper, Jacob Davenport, Kristin Matherly

http://www.koryheath.com/rambots/design-history
http://www.boardgamegeek.com/game/15193


Playtesting—Andrew Plotkin, Andrew Looney, Alison Frane, Dale Newfield, Dan Efran, Peter Hammond,
Margit Gedra

Kory Heath
Proudly powered by WordPress.

http://www.koryheath.com/
https://wordpress.org/

